Supplementary Online Content

eTable 1. Trial-specific medians of five pre-specified predictors of diabetes

eFigure 1. Standard data query sheet used for collection of data from trials

eFigure 2. Assessment of publication bias by funnel plot and Egger test

eFigure 3. A comparison of new-onset diabetes and first major cardiovascular events in trials using atorvastatin 80mg and simvastatin 80mg as the respective intensive regimens

eFigure 4. A comparison of new-onset diabetes and first major cardiovascular events in trials of patients following a recent acute coronary syndrome and patients with stable coronary heart disease

eFigure 5. A sensitivity analysis using hazard ratios for new-onset diabetes and first major cardiovascular events

eFigure 6. Meta-analysis of new-onset diabetes using non-standard diagnostic criteria in TNT and IDEAL

This supplementary material has been provided by the authors to give readers additional information about their work.
eTable 1: Trial-specific medians of five pre-specified predictors of diabetes

<table>
<thead>
<tr>
<th>TRIALS</th>
<th>Age (years)</th>
<th>Body mass index (kg/m²)</th>
<th>Fasting plasma glucose (mg/dL)</th>
<th>HDL-cholesterol (mg/dL)</th>
<th>Triglycerides (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROVE-IT TIMI 22</td>
<td>57</td>
<td>28.2</td>
<td>97</td>
<td>38</td>
<td>153</td>
</tr>
<tr>
<td>A to Z</td>
<td>60</td>
<td>*</td>
<td>*</td>
<td>39</td>
<td>146</td>
</tr>
<tr>
<td>TNT</td>
<td>61</td>
<td>27.6</td>
<td>97</td>
<td>46</td>
<td>131</td>
</tr>
<tr>
<td>IDEAL</td>
<td>61</td>
<td>26.6</td>
<td>97</td>
<td>46</td>
<td>131</td>
</tr>
<tr>
<td>SEARCH</td>
<td>65</td>
<td>27.4</td>
<td>*</td>
<td>39</td>
<td>143</td>
</tr>
</tbody>
</table>

* not available
eFigure 1. Standard data query sheet used for collection of data from trials

Request for data from ________ trial:

Meta-analysis of incident diabetes in intensive vs. moderate dose statin trials

1. Total number of non-DM subjects at baseline
 a. Intensive statin
 b. Low dose statin

2. Baseline characteristics of all non-DM participants at baseline, where available
 a. Mean age (SD) yrs
 b. Mean BMI (SD) kg/m²
 c. Mean fasting glucose (SD) mmol/L
 d. Mean fasting or random HDL-c (SD) mmol/L
 e. Mean fasting or random Natural log [trigs] (SD), log mmol/L
 f. Number of male _____ and female _____ non-DM at baseline
 g. Number of current smokers _____ and not current smokers at baseline

3. Mean LDL-cholesterol (SD) at:
 a. Baseline:
 i. Intensive statin
 ii. Low dose statin
 b. End of study or fixed time during study
 i. Intensive statin
 ii. Low dose statin

4. Methods of diagnosis of diabetes – which of the following were used?
 a. Physician reported (i.e. Adverse Event) **YES / NO**
 b. Commencement of oral medication or insulin **YES / NO**
 c. Biochemistry (2 fasting glucose ≥7.0mmol/L) **YES / NO**

5. Number developing diabetes in each group:
 a. Intensive statin
 b. Low dose statin
 c. Hazard ratio for developing diabetes [high vs. low dose] (95%CI) **(____)**

6. Number developing **CVD events** in each arm (where CVD events includes the following: CVD death, non-fatal MI, non-fatal stroke, coronary revascularisation [CABG, PCI])
 a. Intensive statin
 b. Standard/low dose statin
 c. Hazard ratio for CVD endpoints (high vs. low dose) [HR (95%CI)] **(____)**

7. Interactions for incident diabetes endpoint:
 a. Dichotomous: Nr developing DM / n
 i. Baseline BMI
 1. > median high dose ___ / ___ low dose ___ / ___
 2. < median high dose ___ / ___ low dose ___ / ___
 ii. baseline fasting glucose (if available)
 1. > median high dose ___ / ___ low dose ___ / ___
 2. < median high dose ___ / ___ low dose ___ / ___
 iii. baseline HDL-c (fasting or random as available)
 1. > median high dose ___ / ___ low dose ___ / ___
 2. < median high dose ___ / ___ low dose ___ / ___
 iv. Baseline Triglycerides
 1. > median high dose ___ / ___ low dose ___ / ___
 2. < median high dose ___ / ___ low dose ___ / ___
 v. baseline age
 1. > median high dose ___ / ___ low dose ___ / ___

© 2011 American Medical Association. All rights reserved.
2. < median high dose ___ / ___ low dose ___ / ___

b. Hazard ratios (95%CI) for developing DM: high vs. low dose
 i. Baseline BMI
 1. > median
 2. < median

 ii. baseline fasting glucose (if available)
 1. > median
 2. < median

 iii. baseline HDL-c (fasting or random as available)
 1. > median
 2. < median

iv. Baseline Triglycerides
 1. > median
 2. < median

v. baseline age
 1. > median
 2. < median

8. Interactions for composite CVD endpoint (see point 6):
 a. Dichotomous: Nr developing composite CVD endpoint / n
 i. Baseline BMI
 1. > median high dose ___ / ___ low dose ___ / ___
 2. < median high dose ___ / ___ low dose ___ / ___

 ii. baseline fasting glucose (if available)
 1. > median high dose ___ / ___ low dose ___ / ___
 2. < median high dose ___ / ___ low dose ___ / ___

 iii. baseline HDL-c (fasting or random as available)
 1. > median high dose ___ / ___ low dose ___ / ___
 2. < median high dose ___ / ___ low dose ___ / ___

 iv. baseline Triglycerides
 1. > median high dose ___ / ___ low dose ___ / ___
 2. < median high dose ___ / ___ low dose ___ / ___

 v. baseline age
 1. > median high dose ___ / ___ low dose ___ / ___
 2. < median high dose ___ / ___ low dose ___ / ___

b. Hazard ratios (95%CI) for developing CVD endpoint: high vs. low dose
 i. Baseline BMI
 1. > median
 2. < median

 ii. baseline fasting glucose (if available)
 1. > median
 2. < median

 iii. baseline HDL-c (fasting or random as available)
 1. > median
 2. < median

 iv. baseline Triglycerides
 1. > median
 2. < median

 v. baseline age
 1. > median
 2. < median
eFigure 2. Assessment of publication bias by funnel plot and Egger test

Incident diabetes

Incident CVD

Egger's test p-value = 0.536

Egger's test p-value = 0.696
eFigure 3. A comparison of new-onset diabetes and first major cardiovascular events in trials using atorvastatin 80mg and simvastatin 80mg as the respective intensive regimens

<table>
<thead>
<tr>
<th>Statin type</th>
<th>Intensive Cases / n (%)</th>
<th>Standard dose Cases / n (%)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin 80 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROVE IT-TIMI 22 (18)101/1707 (5.9%) 99/1688 (5.9%)</td>
<td>1.01 (0.76, 1.34)</td>
<td>315/1707 (18.4%) 355/1688 (21.0%)</td>
<td>0.85 (0.72, 1.01)</td>
</tr>
<tr>
<td>TNT (15) 418/3798 (11.0%)358/3797 (9.4%)</td>
<td>1.19 (1.02, 1.38)</td>
<td>647/3798 (17.0%) 830/3797 (21.9%)</td>
<td>0.73 (0.65, 0.82)</td>
</tr>
<tr>
<td>IDEAL (16) 240/3737 (6.4%) 209/3724 (5.6%)</td>
<td>1.15 (0.95, 1.40)</td>
<td>776/3737 (20.8%) 917/3724 (24.6%)</td>
<td>0.80 (0.72, 0.89)</td>
</tr>
<tr>
<td>Simvastatin 80 mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A to Z (17) 65/1768 (3.7%) 47/1736 (2.7%)</td>
<td>1.37 (0.94, 2.01)</td>
<td>212/1768 (12.0%) 234/1736 (13.5%)</td>
<td>0.87 (0.72, 1.07)</td>
</tr>
<tr>
<td>SEARCH (5) 625/5398 (11.6%)587/5399 (10.9%)</td>
<td>1.07 (0.95, 1.21)</td>
<td>1184/5398 (21.9%) 1214/5399 (22.5%)</td>
<td>0.97 (0.88, 1.06)</td>
</tr>
<tr>
<td>Overall pooled odds ratio</td>
<td>1.12 (1.04, 1.22)</td>
<td>Overall pooled odds ratio</td>
<td>0.84 (0.75, 0.94)</td>
</tr>
</tbody>
</table>

p-value for heterogeneity = 0.562

Odds ratio (more vs. less intensive treatment)
eFigure 4. A comparison of new-onset diabetes and first major cardiovascular events in trials of patients following a recent acute coronary syndrome and patients with stable coronary heart disease.
eFigure 5. A sensitivity analysis using hazard ratios for new-onset diabetes and first major cardiovascular events

<table>
<thead>
<tr>
<th>Outcome/study</th>
<th>Intensive Cases / N</th>
<th>Standard dose Cases / N</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCIDENT DIABETES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNT (15)</td>
<td>418/3798</td>
<td>358/3797</td>
<td>1.18 (1.02, 1.36)</td>
</tr>
<tr>
<td>IDEAL (16)</td>
<td>240/3737</td>
<td>209/3724</td>
<td>1.16 (0.96, 1.39)</td>
</tr>
<tr>
<td>SEARCH (5)</td>
<td>625/5398</td>
<td>587/5399</td>
<td>1.07 (0.96, 1.20)</td>
</tr>
<tr>
<td>Pooled hazard ratio</td>
<td>1283/12933</td>
<td>1154/12920</td>
<td>1.12 (1.03, 1.21)</td>
</tr>
</tbody>
</table>

I² (95% CI) = 0% (0-83%), p = 0.535

| **INCIDENT CVD** |
PROVE-IT TIMI 22 (18)	315/1707	355/1688	0.88 (0.76, 1.02)
A to Z (17)	212/1768	234/1736	0.88 (0.73, 1.06)
TNT (15)	647/3798	830/3797	0.76 (0.68, 0.84)
IDEAL (16)	776/3737	917/3724	0.82 (0.75, 0.91)
SEARCH (5)	1184/5398	1214/5399	0.97 (0.89, 1.05)
Pooled hazard ratio	**3134/16408**	**3550/16344**	**0.86 (0.78, 0.95)**

Subtotal (I-squared = 72.9%, p = 0.005)
eFigure 6. Meta-analysis of new-onset diabetes using non-standard diagnostic criteria in TNT and IDEAL

<table>
<thead>
<tr>
<th>Study</th>
<th>Intensive Cases / n</th>
<th>Standard dose Cases / n</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROVE-IT TIMI 22 (18)</td>
<td>101/1707</td>
<td>99/1688</td>
<td>1.01 (0.76, 1.34)</td>
</tr>
<tr>
<td>A to Z (17)</td>
<td>65/1768</td>
<td>47/1736</td>
<td>1.37 (0.94, 2.01)</td>
</tr>
<tr>
<td>TNT (15)</td>
<td>351/3798</td>
<td>308/3797</td>
<td>1.15 (0.98, 1.35)</td>
</tr>
<tr>
<td>IDEAL (16)</td>
<td>239/3737</td>
<td>208/3724</td>
<td>1.15 (0.95, 1.40)</td>
</tr>
<tr>
<td>SEARCH (5)</td>
<td>625/5398</td>
<td>587/5399</td>
<td>1.07 (0.95, 1.21)</td>
</tr>
<tr>
<td>Pooled odds ratio</td>
<td>1381/16408</td>
<td>1249/16344</td>
<td>1.11 (1.03, 1.21)</td>
</tr>
</tbody>
</table>

\(I^2 = 0\% \) [95\% CI 0-64\%), \(p = 0.683 \)

Footnote: use of non-standard criteria for TNT provided 117 fewer cases of new-onset diabetes and 2 fewer cases for IDEAL than in the primary analysis; the difference between TNT and IDEAL in the two analyses is explained by the differing protocols for frequency of FPG measurement in the two trials.