Supplementary Online Content

eAppendix. Assessment of workload satisfaction and learning environment and for secular trends in error rates
eReference

This supplementary material has been provided by the authors to give readers additional information about their work.
eAppendix. Assessment of workload satisfaction and learning environment and for secular trends in error rates

Assessment of Workload Satisfaction and Learning Environment

To assess for changes with duty hour reforms in resident workload satisfaction and assessment of the residency learning environment, we administered the 17-item Resident Questionnaire in month 12.1 Two-sample t-tests were used to compare Workload Satisfaction and Learning Environment scores between cohorts.

Workload Satisfaction decreased from 3.1 ± 0.8 in the preimplementation cohort to 2.9 ± 0.8 in the postimplementation cohort, but the change was not statistically significant [$t (1) = -1.68; P = 0.09$]. The mean Learning Environment score did not change significantly between cohorts (2.3 ± 0.6 for both cohorts [$t (1) = -0.03; P = .98$].

Assessment for Secular Trends in Error Rates

A growing awareness and training emphasis on medical errors may have resulted in an increased rate of self-reported medical errors independent of duty hour reforms. If a secular trend toward increasing awareness was influencing the self-reported error data collected in this study, increasing error rates in the years before duty hour reforms and increasing error rates through the course of each academic year would be expected. We assessed for the presence of this trend through the following analyses: (1) comparing self-reported errors between the two preimplementation cohorts (2009 and 2010) using a GEE analysis, with cohort membership entered as the predictor variable and medical errors entered as the outcome variable (2) comparing self-reported errors across quarters in all cohorts using linear regression, with assessment quarter (first, second, third, or fourth) entered as the predictor variable and medical errors entered as the outcome variable.

In our assessment of temporal changes in error reporting, there was no significant difference in the percentage of respondents reporting errors in the two preimplementation groups (19.8% vs. 20.0%; Wald Chi Square (1) = 0.19; $P = .66$) or change in reported errors across the four quarterly assessments [$F (1) = .009; P = .98$].

eReference